Abstract

Pseudomonas aeruginosa, an opportunistic bacterial pathogen of public health concern, is known for its metabolic versatility, adaptability in harsh environment, and pathogenic aggressiveness. P. aeruginosa relies on various regulatory networks modulated by small non-coding RNAs, which in turn influence different physiological traits such as metabolism, stress response, and pathogenesis. In this study, srbA sRNA has been shown to play a diverse role in regulating cellular metabolism and the production of different virulence factors in P. aeruginosa. srbA was found to control the TCA cycle, a key regulatory pathway for cellular metabolism and energy production, by regulating three main enzymes: citrate synthase (gltA), isocitrate dehydrogenase (icd), and α-ketoglutarate dehydrogenase E1 subunit (sucA) at both the transcriptional and translational levels. By modulating the TCA cycle, srbA could help the bacteria to adapt nutritional stress by lowering energy consumption. Additionally, srbA has been found to differentially regulate production of various virulence factors such as rhamnolipid, elastase, LasA protease, and pyocyanin under both nutrient-rich and nutrient-limiting conditions. It could also influence motilities in P. aeruginosa, linked to biofilm formation and pathogenicity. Thus, srbA might hold a promise in the research area for identifying virulence pathways and developing novel therapeutic targets to combat the global pathogenic threat of P. aeruginosa.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.