Abstract
Ligand-directed Ru(bpy)3 photocatalysts induce chromophore-assisted light inactivation (CALI) of target proteins under visible light irradiation in vitro and within cells. Here, histidine, methionine, and tryptophan residues were oxidized by the singlet oxygen ((1)O2) generated by Ru(bpy)3 with light. The addition of a tyrosyl radical trapper (TRT), such as N'-acyl-N,N-dimethyl phenylenediamine, inhibited peptide/protein oxidation and induced labeling on the tyrosine residue. This mechanistic study suggests that TRT scavenges (1)O2, concomitant with the coupling reaction to the tyrosyl radical generated by Ru(bpy)3. Both CALI and labeling can be regulated by the Ru(bpy)3 photocatalysts in the absence or presence of TRT. Ligand-conjugated Ru(bpy)3 photocatalysts (local environmental single-electron transfer catalysts: LSCs) were used not only for target-selective protein labeling, but also for protein knockdown by CALI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.