Abstract
The mammalian target of rapamycin (mTOR) is a key regulator of cell growth and metabolism. It associates with multiple proteins and forms two distinct signaling complexes, mTORC1 and mTORC2. Accumulating evidence has revealed critical roles for intact mTOR signaling during T-cell activation and responses to microbial infection. However, the importance of mTOR regulation in T cells has yet to be explored. The TSC1/TSC2 complex has been shown to inhibit mTORC1 signaling in cell line models. We show here that deletion of TSC1 in the murine T-cell lineage results in a dramatic reduction of the peripheral T-cell pool, correlating with increased cell death. While mTORC1 is constitutively activated, mTORC2 signaling, reflected by Akt phosphorylation and activity, is decreased in TSC1-deficient T cells. Furthermore, TSC1-deficient T cells contain elevated reactive oxygen species (ROS) and exhibit decreased mitochondrial content and membrane potential, which is correlated with the activation of the intrinsic death pathway. Overall, our results demonstrate that TSC1 differentially regulates mTORC1 and mTORC2 activity, promotes T-cell survival, and is critical for normal mitochondrial homeostasis in T cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.