Abstract
Regulation of synthesis and degradation of sulfoquinovosyl diacylglycerol (SQDG), one of the membrane lipids that construct thylakoids, under sulfur (S)-starved conditions and its physiological significance were explored in a green alga, Chlamydomonas reinhardtii. Here, we used sac1 and sac3 mutants defective in response to ambient S-status to characterize the system of known induction of SQDG degradation by S starvation that ensures a major S source for protein synthesis. The SQDG synthesis system was monitored in the wild type during S starvation. An SQDG-deficient mutant, hf-2, was utilized to discover functions where SQDG metabolism participates during S starvation. The induction of SQDG degradation was largely repressed in both sac1 and sac3 mutants. The SQDG synthesis capacity was increased by 40% after S starvation, with a sixfold elevation in the mRNA level of the SQD1 gene for SQDG synthesis. Compared with the wild type, hf-2 had decreased protein accumulation, photosystem (PS) I stability and growth rate. A role of SQDG as an S storage lipid is fulfilled under the control of both SAC1 and SAC3 genes, and it is essential for proper protein synthesis in acclimatization of cells to S starvation. The enhancement in SQDG synthesis may reflect the importance of SQDG as the membrane lipid that stabilizes the PSI complex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.