Abstract

Regulation of synthesis and degradation of sulfoquinovosyl diacylglycerol (SQDG), one of the membrane lipids that construct thylakoids, under sulfur (S)-starved conditions and its physiological significance were explored in a green alga, Chlamydomonas reinhardtii. Here, we used sac1 and sac3 mutants defective in response to ambient S-status to characterize the system of known induction of SQDG degradation by S starvation that ensures a major S source for protein synthesis. The SQDG synthesis system was monitored in the wild type during S starvation. An SQDG-deficient mutant, hf-2, was utilized to discover functions where SQDG metabolism participates during S starvation. The induction of SQDG degradation was largely repressed in both sac1 and sac3 mutants. The SQDG synthesis capacity was increased by 40% after S starvation, with a sixfold elevation in the mRNA level of the SQD1 gene for SQDG synthesis. Compared with the wild type, hf-2 had decreased protein accumulation, photosystem (PS) I stability and growth rate. A role of SQDG as an S storage lipid is fulfilled under the control of both SAC1 and SAC3 genes, and it is essential for proper protein synthesis in acclimatization of cells to S starvation. The enhancement in SQDG synthesis may reflect the importance of SQDG as the membrane lipid that stabilizes the PSI complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.