Abstract

The ascidian embryo, a model for the primitive mode of chordate development, rapidly forms a dorsal nervous system which consists of a small number of neurons. Here, we have characterized the transcriptional regulation of an ascidian synaptotagmin (syt) gene to explore the molecular mechanisms underlying development of synaptic transmission. In situ hybridization showed that syt is expressed in all neurons described in previous studies and transiently in the embryonic epidermis. Neuronal expression of syt requires induction from the vegetal side of the embryo, whereas epidermal expression occurs autonomously in isolated ectodermal blastomeres. Introduction of green fluorescent protein reporter gene constructs into the ascidian embryos indicates that a genomic fragment of the 3.4-kb 5' upstream region contains promoter elements of syt gene. Deletion analysis of the promoter suggests that syt expression in neurons and in the embryonic epidermis depends on distinct cis-regulatory regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.