Abstract

Synaptophysin is an integral membrane protein of synaptic vesicles characterized by four transmembrane domains with both termini facing the cytoplasm. Although synaptophysin has been implicated in neurotransmitter release, and decreased synaptophysin levels have been associated with several neurodegenerative diseases, the molecular mechanism that regulates the degradation of synaptophysin remains unsolved. Using the cytoplasmic C terminus of synaptophysin as bait in a yeast two-hybrid screen, we identified two synaptophysin-binding proteins, Siah-1A and Siah-2, which are rat homologues of Drosophila Seven in Absentia. We demonstrated that Siah-1A and Siah-2 associate with synaptophysin both in vitro and in vivo and defined the binding domains of synaptophysin and Siah that mediate their association. Siah proteins exist in both cytosolic and membrane-associated pools and co-localize with synaptophysin on synaptic vesicles and early endosomes. In addition, Siah proteins interact specifically with the brain-enriched E2 ubiquitin-conjugating enzyme UbcH8 and facilitate the ubiquitination of synaptophysin. Furthermore, overexpression of Siah proteins promotes the degradation of synaptophysin via the ubiquitin-proteasome pathway. Our findings indicate that Siah proteins function as E3 ubiquitin-protein ligases to regulate the ubiquitination and degradation of synaptophysin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.