Abstract

Advances in microscopy techniques have revealed the details of synaptic nanodomains as defined by the segregation of specific molecules on or beneath both presynaptic and postsynaptic membranes. However, it is yet to be clarified how such segregation is accomplished without demarcating membrane and how nanodomains respondto the neuronal activity. It was recently discovered that proteins at the synapse undergo liquid-liquid phase separation (LLPS), which not only contributes to the accumulation of synaptic proteins but also to further segregating the proteins into subdomains by forming phase-in-phase structures. More specifically, CaMKII, a postsynaptic multifunctional kinase that serves as a signaling molecule, acts as a synaptic cross-linker which segregates certain molecules through LLPS in a manner triggered by Ca2+. Nanodomain formation contributes to the establishment of trans-synaptic nanocolumns, which may be involved in the optimization of spatial arrangement of the transmitter release site and receptor, thereby serving as a new mechanism of synaptic plasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.