Abstract

Energy homoeostasis, a co-ordinated balance of food intake and energy expenditure, is regulated by the CNS (central nervous system). The past decade has witnessed significant advances in our understanding of metabolic processes and brain circuitry which responds to a broad range of neural, nutrient and hormonal signals. Accumulating evidence demonstrates altered synaptic plasticity in the CNS in response to hormone signals. Moreover, emerging observations suggest that synaptic plasticity underlies all brain functions, including the physiological regulation of energy homoeostasis, and that impaired synaptic constellation and plasticity may lead to pathological development and conditions. Here, we summarize the current knowledge on the regulation of postsynaptic receptors such as AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid), NMDA (N-methyl-D-aspartate) and GABA (γ-aminobutyric acid) receptors, and the presynaptic components by hormone signals. A detailed understanding of the neurobiological mechanisms by which hormones regulate energy homoeostasis may lead to novel strategies in treating metabolic disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.