Abstract

Cell-matrix interactions exert major effects on such phenotypic features as cell growth and differentiation. Apoptosis is an active form of cell death that is crucial for maintaining the appropriate number of cells as well as the organization of tissue. Recently, it has been suggested that apoptosis of the mesangial cells (MC) is important in glomerular remodeling after injury. The MC are surrounded by an extracellular matrix (ECM) in vivo. Since in disease conditions the mesangial matrix is altered quantitatively and qualitatively, it is of interest to determine whether cell-matrix interactions may influence apoptosis of the MC. We first investigated the differences in the susceptibility to apoptotic stimuli of the MC cultured on various ECM components (type I collagen, fibronectin, basement membrane matrix). We then determined whether the inhibition of MC-matrix interactions would affect apoptosis. Finally, interactions between MC and matrix were disrupted by the inhibition of beta1-integrin expression with antisense oligonucleotides (ODN). When MC were cultured on type I collagen or fibronectin and deprived of serum for eight hours, the extracted DNA from the MC demonstrated an internucleosomal ladder pattern on gel electrophoresis that constituted the biochemical characteristic of apoptosis. However, no ladder pattern was apparent when MC were cultured on basement membrane matrix. The attachment of cells was completely inhibited when the MC were cultured on agarose-coated dishes for 24 hours. Gel electrophoresis of DNA extracted from these cells showed a ladder pattern. However, the MC attached to the substratum did not show any apoptosis. MC showed an increase in apoptotic cell death after treatment with antisense ODN against beta1-integrin molecule. These results indicate that normal ECM may prevent the MC from undergoing apoptosis and serve as a survival factor for MC. Signals from ECM that prevent apoptosis may be mediated by beta1-integrin molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call