Abstract
Oral administration of the combination of L-threonate (threonate) and magnesium (Mg2+) in the form of L-Threonic acid Magnesium salt (L-TAMS) can enhance learning and memory in young rats and prevent memory decline in aging rats and in Alzheimer’s disease model mice. Recent results from a human clinical trial demonstrate the efficacy of L-TAMS in restoring global cognitive abilities of older adults. Previously, we reported that neuronal intracellular Mg2+ serves as a critical signaling molecule for controlling synapse density, a key factor that determines cognitive ability. The elevation of brain Mg2+ by oral administration of L-TAMS in intact animals plays a significant role in mediating the therapeutic effects of L-TAMS. The current study sought to elucidate the unique role of threonate. We aimed to understand if threonate acts directly to elevate intraneuronal Mg2+, and why Mg2+ given without threonate is ineffective for enhancing learning and memory ability. We discovered that threonate is naturally present in cerebrospinal fluid (CSF) and oral treatment with L-TAMS elevated CSF threonate. In cultured hippocampal neurons, threonate treatment directly induced an increase in intracellular Mg2+ concentration. Functionally, elevating threonate upregulated expression of NR2B-containing NMDAR, boosted mitochondrial membrane potential (ΔΨm), and increased functional synapse density in neuronal cultures. These effects are unique to threonate, as other common Mg2+ anions failed to have the same results. Mechanistically, threonate’s effects were specifically mediated through glucose transporters (GLUTs). We also evaluated the effects of threonate in human neural stem cell-derived neurons, and found it was equally effective at upregulating synapse density. The current study provides an explanation for why threonate is an essential component of L-TAMS and supports the use of L-TAMS to promote cognitive abilities in human.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.