Abstract

Skeletal muscle atrophy is a severe consequence of ageing, neurological disorders and chronic disease. Identifying the intracellular signalling pathways controlling changes in skeletal muscle size and function is vital for the future development of potential therapeutic interventions. Striated activator of Rho signalling (STARS), an actin-binding protein, has been implicated in rodent cardiac hypertrophy; however its role in human skeletal muscle has not been determined. This study aimed to establish if STARS, as well as its downstream signalling targets, RhoA, myocardin-related transcription factors A and B (MRTF-A/B) and serum response factor (SRF), were increased and decreased respectively, in human quadriceps muscle biopsies taken after 8 weeks of both hypertrophy-stimulating resistance training and atrophy-stimulating de-training. The mRNA levels of the SRF target genes involved in muscle structure, function and growth, such as alpha-actin, myosin heavy chain IIa (MHCIIa) and insulin-like growth factor-1 (IGF-1), were also measured. Following resistance training, STARS, MRTF-A, MRTF-B, SRF, alpha-actin, MHCIIa and IGF-1 mRNA, as well as RhoA and nuclear SRF protein levels were all significantly increased by between 1.25- and 3.6-fold. Following the de-training period all measured targets, except for RhoA, which remained elevated, returned to base-line. Our results show that the STARS signalling pathway is responsive to changes in skeletal muscle loading and appears to play a role in both human skeletal muscle hypertrophy and atrophy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.