Abstract

Spinophilin is a protein phosphatase-1 (PP-1)- and actin-binding protein that is enriched in dendritic spines. Phosphorylation of the actin-binding domain of rat spinophilin at one or more sites by protein kinase A (PKA) inhibits actin binding. Here, we investigated the regulation of mouse spinophilin that contains only a single PKA-site (Ser94) within its actin-binding domain. In vitro phosphorylation of Ser94 resulted in the dissociation of spinophilin from actin filaments. In mouse neostriatal slices, phospho-Ser94 (p-Ser94) was dephosphorylated mainly by PP-1 and also by PP-2A. Activation of dopamine D1 receptors in striatonigral medium spiny neurons, and of adenosine A 2A receptors in striatopallidal medium spiny neurons increased, whereas activation of dopamine D2 receptors in striatopallidal neurons decreased, spinophilin Ser94 phosphorylation. In neostriatal slices from DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of 32 kDa) knockout mice, the effects of D1, D2 and A 2A receptors were largely attenuated. Activation of NMDA receptors decreased Ser94 phosphorylation in a PP-2A-dependent, but DARPP-32-independent, manner. These results suggest that PKA-dependent phosphorylation of spinophilin at Ser94 in both striatonigral and striatopallidal neurons requires synergistic contributions from the PKA and DARPP-32/PP-1 pathways. In addition, PP-2A plays a role in Ser94 dephosphorylation in response to activation of both D2 and NMDA receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.