Abstract
Sucrose phosphate synthase was partially purified from spinach leaves and the effects and interactions among glucose-6-P, inorganic phosphate (Pi), and pH were investigated. Glucose-6-P activated sucrose phosphate synthase and the concentration required for 50% of maximal activation increased as the concentration of fructose-6-P was decreased. Inorganic phosphate inhibited sucrose phosphate synthase activity and antagonized the activation by glucose-6-P. Inorganic phosphate caused a progressive increase in the concentration of glucose-6-P required for 50% maximal activation from 0.85 mm (minus Pi) to 9.9 mm (20 mm Pi). In the absence of glucose-6-P, Pi caused partial inhibition of sucrose phosphate synthase activity (about 65%). The concentration of Pi required for 50% maximal inhibition decreased with a change in pH from 6.5 to 7.5. When the effect of pH on Pi ionization was taken into account, it was found that per cent inhibition increased hyperbolically with increasing dibasic phosphate concentration independent of the pH. Sucrose phosphate synthase had a relatively broad pH optimum centered at pH 7.5. Inhibition by Pi was absent at pH 5.5, but became more pronounced at alkaline pH, whereas activation by glucose-6-P was observed over the entire pH range tested. The results suggested that glucose-6-P and Pi bind to sites distinct from the catalytic site, e.g. allosteric sites, and that the interactions of these effectors with pH and concentrations of substrate may be involved in the regulation of sucrose synthesis in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.