Abstract

Mammalian spermatogenesis is a classic adult stem cell-dependent process, supported by self-renewal and differentiation of spermatogonial stem cells (SSCs). Studying SSCs provides a model to better understand adult stem cell biology, and deciphering the mechanisms that control SSC functions may lead to treatment of male infertility and an understanding of the etiology of testicular germ cell tumor formation. Self-renewal of rodent SSCs is greatly influenced by the niche factor glial cell line-derived neurotrophic factor (GDNF). In mouse SSCs, GDNF activation upregulates expression of the transcription factor-encoding genes bcl6b, etv5, and lhx1, which influence SSC self-renewal. Additionally, the non-GDNF-stimulated transcription factors Plzf and Taf4b have been implicated in regulating SSC functions. Together, these molecules are part of a robust gene network controlling SSC fate decisions that may parallel the regulatory networks in other adult stem cell populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.