Abstract

Human articular chondrocytes rapidly lose their phenotype in monolayer culture. Recently we have shown that overexpression of the transcription factor SOX9 greatly enhanced re-expression of the phenotype in three-dimensional aggregate cultures. Here we show that endogenous SOX9 mRNA can be rapidly up-regulated in subcultured human articular chondrocytes if grown in alginate, in monolayer with cytochalasin D, or with specific inhibition of the RhoA effector kinases ROCK1 and -2, which all prevent actin stress fiber formation. Disruption of actin stress fibers using any of these redifferentiation stimuli also supported the superinduction of SOX9 by cycloheximide. The superinduction was blocked by inhibitors of the p38 MAPK signaling pathway and involved the stabilization of SOX9 mRNA. Furthermore stimulation of chondrocyte p38 MAPK activity with interleukin-1beta resulted in increased levels of SOX9 mRNA, and this was again dependent on the absence of actin stress fibers in the cells. In this study of chondrocyte redifferentiation we have provided further evidence of the early involvement of SOX9 and have discovered a novel post-transcriptional regulatory mechanism activated by p38 MAPK, which stabilized SOX9 mRNA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.