Abstract
Regulation of Na-Ca exchange activity by ATP and by intracellular Ca (Cai) has been studied in suspensions of intact Na-loaded adult rat cardiac myocytes using 45Ca uptake and exchange of 22Na. ATP depletion of Na-loaded myocytes results in a strong inhibition of the Na-Ca exchanger, manifested as a strong inhibition of intracellular Na-dependent Ca uptake. Ca uptake by Na-loaded cells in the course of ATP depletion can be very heterogeneous because of the heterogeneity amongst cells of the extent of ATP depletion. This can result in a false measure of the dependence of exchanger activity on cell ATP content. Under conditions intended to maximize the uniformity of cell ATP content amongst cells we found a half maximal rate of Ca uptake with a cell ATP content of 1.96 nmol/mg, about 10% of the normal cell ATP level. The results suggest that ATP depletion after ischemia plus reperfusion is unlikely to limit the rate of Ca uptake by Na-Ca exchange in the whole heart if at least one quarter of the ATP is restored. Ca addition to myocytes loaded with Na in the absence of Ca results in a strong activation of the Na-Ca exchanger at an intracellular site, manifested as a large activation of Na-Na exchange activity. A similar activation of the exchanger is observed in cells with a normal level of intracellular Na, suspended in a medium containing physiological levels of Ca, when the cells are stimulated to beat by application of an electric field. This suggests that regulation of the exchanger by Cai is important physiologically, in the regulation of excitation-contraction coupling. Cells depleted of ATP show not only a strongly inhibited rate of Na-Ca exchange and Na-Na exchange, but also a strongly reduced degree of activation by Cai, even in ATP-depleted cells with no acidosis. This could result from the combined effect of ATP loss and an elevated intracellular Mg concentration on Ca binding affinity at the regulatory site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.