Abstract

BackgroundPrevious studies have suggested the involvement of epithelium in modulating the contractility of neighboring smooth muscle cells. However, the mechanism underlying epithelium-derived relaxation in airways remains largely unclear. This study aimed to investigate the mechanism underlying epithelium-dependent smooth muscle relaxation mediated by neurotransmitters.MethodsThe contractile tension of Sprague-Dawley (SD) rat tracheal rings were measured using a mechanical recording system. Intracellular Ca2+ level was measured using a Ca2+ fluorescent probe Fluo-3 AM, and the fluorescence signal was recorded by a laser scanning confocal imaging system. The prostaglandin E2 (PGE2) content was measured using an enzyme-linked immunosorbent assay kit.ResultsWe observed that the neurotransmitter acetylcholine (ACh) restrained the electric field stimulation (EFS)-induced contraction in the intact but not epithelium-denuded rat tracheal rings. After inhibiting the muscarinic ACh receptor (mAChR) or cyclooxygenase (COX), a critical enzyme in prostaglandin synthesis, the relaxant effect of ACh was attenuated. Exogenous PGE2 showed a similar inhibitory effect on the EFS-evoked contraction of tracheal rings. Moreover, ACh triggered phospholipase C (PLC)-coupled Ca2+ release from intracellular Ca2+ stores and stimulated COX-dependent PGE2 production in primary cultured rat tracheal epithelial cells.ConclusionsCollectively, this study demonstrated that ACh induced rat tracheal smooth muscle relaxation by promoting PGE2 release from tracheal epithelium, which might provide valuable insights into the cross-talk among neurons, epithelial cells and neighboring smooth muscle cells in airways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call