Abstract

RationaleSiglec-8 is a surface receptor predominantly expressed on human eosinophils where its ligation induces reactive oxygen species (ROS) formation and cell death. Since Siglec-8 has intracellular tyrosine-based motifs, we hypothesized that Src family kinases (SFKs) are involved in ROS formation and cell death induced by Siglec-8 engagement. MethodsHuman peripheral blood eosinophils were purified and incubated with anti-Siglec-8 monoclonal antibodies (mAb, agonist), IL-5, and SFK pharmacological inhibitors. We focused on Siglec-8-induced cell death in short-term IL-5-activated cells leading to a regulated necrosis-type cell death. ROS production was determined by dihydrorhodamine (DHR) 123 labeling and flow cytometry, or by chemiluminescence using Amplex red. Activation of SFK was determined using phospholuminex and Western blotting. ResultsIn order to determine cellular localization of ROS production, we measured intra and extracellular ROS. While an ETosis stimulus (calcium ionophore A23187) led to extracellular ROS (ecROS) production, Siglec-8-engagement in short-term IL-5 activated cells led to intracellular ROS (icROS) accumulation. Consistently, inhibition of extracellular ROS by catalase inhibited ETosis, but not IL-5-primed Siglec-8-induced cell death. In order to determine signaling events for Siglec-8, we performed Western blotting and found SFK phosphorylation in lysates from eosinophils stimulated with anti-Siglec-8 mAb±IL-5. In order to identify which SFKs were involved, we used the phospholuminex assay and found increased levels of phosphorylated Fgr in the cytoplasmic fraction of cells co-stimulated with anti-Siglec-8 and IL-5 for 3 hours compared with cells stimulated with IL-5 alone. To test the involvement of SFKs in ROS production and cell death, we used SFK inhibitors PP2 and dasatinib, both of which completely inhibited eosinophil ROS production and cell death induced by anti-Siglec-8 and IL-5 co-stimulation. ConclusionSiglec-8 engagement in short-term IL-5-activated eosinophils causes icROS production and SKF phosphorylation, and both are essential in mediating Siglec-8-induced cell death.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.