Abstract

Physical removal of mammalian cumulus-oocyte complexes (COCs) from ovarian follicles results in spontaneous resumption of meiosis, largely because of a decrease in cAMP concentrations, causing asynchrony between cytoplasmic and nuclear maturation and decreased oocyte developmental competence. The aim of this study was to modulate cAMP concentrations within ovine COCs to delay spontaneous nuclear maturation and improve developmental competence. Abattoir-derived sheep COCs were cultured for 2 hours (pre-IVM) in 100 μM forskolin (FSK) plus 500 μM 3-isobutyl-1-methylxanthine (IBMX). Pre-IVM (100 μM FSK and 500 μM IBMX) culture increased COC cAMP concentrations 10-fold compared with controls (P < 0.05). With regard to nuclear maturation, with FSK and IBMX and/or with FSH and cilostamide delayed completion of meiosis (metaphase II) by 3 to 4 hours compared with standard IVM (FSH-stimulated induction of meiosis). In this study, pre-IVM (with FSK and IBMX) followed by IVM (with FSH and cilostamide), increased ovine COC cAMP concentrations and delayed, but did not inhibit, completion of nuclear maturation. This did not affect embryo development rates, but increased total cell number of blastocysts compared with IVM with FSH alone (103 ± 6 vs. 66 ± 4 cells, respectively; mean ± SEM; P < 0.05). We inferred that regulation of ovine oocyte cAMP concentrations during IVM improved embryo quality compared with embryos produced by standard IVM methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call