Abstract
The suitability of monoenoic, dienoic, tetraenoic, and hexaenoic molecular species of 1,2-diacyl-sn-glycerols as substrates for the CDPcholine: 1,2-diacyl-sn-glycerol cholinephosphotransferase (EC 2.7.8.2) was studied in rat liver microsomes. No statistically significant difference in the rates of phosphatidylcholine synthesis with the various diacylglycerols was found at 0.40 mM, although a moderate discrimination against hexaenoic species relative to monoenoic and dienoic species was observed at 0.25 mM. The addition of palmitoyl-CoA (7.5 micron) significantly enhanced cholinephosphotransferase activity when tetraenoic diacylglycerols were added at 0.25 or 0.40 mM. CDPethanolamine at 24.4 micron was found to inhibit the rates of phophatidylcholine biosynthesis by 54 and 39% with hexaenoic and monoenoic 1,2-diacyl-sn-glycerols, respectively, whereas no significant effects were observed in the case of dienoic and tetraenoic species. These latter findings may partially explain why 1-saturated 2-docosahexaenoyl diacylglycerols are used to a greater extent for phosphatidylethanolamine than for phosphatidylcholine synthesis in rat liver in vivo. The present results also suggest that the selectivity of the cholinephosphotransferase for certain molecular species of 1,2-diacyl-sn-glycerols is a function of diacylglycerol concentration and may be mediated under physiological conditions by substrates for enzymes which compete for common diacylglycerol precursors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.