Abstract

Hindlimb unweighting (HU) causes upregulation of several muscle-specific genes responsible for the slow-to-fast transition in soleus skeletal muscle properties despite the profound muscle atrophy. The purpose of this study was to examine the expression of the fast and slow isoforms of the sarcoplasmic reticulum Ca(2+)-ATPase at the mRNA and protein level in the soleus muscle over a time course of HU and relate them to Ca(2+)-dependent ATPase activity and selected contractile properties. mRNA levels of the acetylcholine receptor (AChR) were measured to compare the signal of unweighting with denervation. Atrophy of the soleus muscles from tail-suspended rats was observed at all time points with muscle mass decreased by 52% at 28 days of HU (P < 0.05). Northern blot analysis showed the relative expression of the fast Ca2+ pump mRNA increased by 0, 250, 910, 1,340, and 4,050% over control levels at 1, 4, 7, 14, and 28 days of HU, respectively, whereas changes in slow mRNA were variable and modest in comparison. For the same time points, Western blot analysis showed relative expression of the fast Ca2+ pump protein increased by 30, 110, 320, 280, and 300% over control levels, whereas the slow-pump protein expression was unchanged except for a 75% decrease at 28 days of HU. Specific Ca(2+)-dependent ATPase activity was increased (P < 0.05) by 170% at 28 days of HU. Contractile properties measured in vitro at 14 and 28 days revealed time to peak tension and one-half relaxation time were shortened (P < 0.05) and a rightward shift in the tension-frequency curves in unloaded soleus muscles.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.