Abstract

Marine birds can drink seawater because their cephalic ‘salt’ glands secrete a sodium chloride (NaCl) solution more concentrated than seawater. Salt gland secretion generates osmotically free water that sustains their other physiological processes. Acclimation to saline induces interstitial water and Na move into cells. When the bird drinks seawater, Na enters the plasma from the gut and plasma osmolality (Osm pl) increases. This induces water to move out cells expanding the extracellular fluid volume (ECFV). Both increases in Osm pl and ECFV stimulate salt gland secretion. The augmented intracellular fluid content should allow more rapid expansion of ECFV in response to elevated Osm pl and facilitate activation of salt gland secretion. To fully utilize the potential of the salt glands, intestinally absorbed NaCl must be reabsorbed by the kidneys. Thus, Na uptake at gut and renal levels may constrain extrarenal NaCl secretion. High NaCl intake elevates plasma aldosterone concentration of Pekin ducks and aldosterone stimulates intestinal and renal water and sodium uptake. High NaCl intake induces lengthening of the small intestine of adult Mallards, especially males. High NaCl intake has little effect on glomerular filtration rate or tubular sodium Na uptake of birds with competent salt glands. Relative to body mass, kidney mass and glomerular filtration rate (GFR) are greater in birds with salt glands than in birds that do not have them. Birds with salt glands do not change GFR, when they drink saline. Thus, their renal filtrate contains excess Na that is, in some species, almost completely renally reabsorbed and excreted in a more concentrated salt gland secretion. Na reabsorption by kidneys of other species, like mallards is less complete and their salt glands make less concentrated secretion. Such species may reflux urine into the hindgut, where additional Na may also be reabsorbed for extrarenal secretion. During exposure to saline, marine birds maintain elevated aldosterone levels despite high Na intake. Marine birds are excellent examples of physiological plasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.