Abstract

Ferrocene (Fc) is a common quencher of Ru(bpy)32+ luminescence. However, interactions between Fc and Ru(bpy)32+ can be extremely complicated. In this work, we reported the first use of Fc to regulate the electrochemiluminescence (ECL) of Ru(bpy)32+ by tuning the length of the DNA sequence between Fc and the luminophore of nitrogen-doped graphene quantum dots-Ru(bpy)32+-doped silica nanoparticles (SiO2@Ru-NGQDs). The ECL of SiO2@Ru-NGQDs was depressed when the distance between Ru(bpy)32+ and Fc was less than 8 nm; a stronger ECL was observed when the distance was more than 12 nm. The switching of the ECL of Ru(bpy)32+ by Fc was attributed to the electron transfer mechanism, in which Fc participated in the redox of Ru(bpy)32+ for "signal-off" ECL; this favored electron transfer at the electrode fabricated with an Fc-labeled aptamer (Fc-apt) and SiO2@Ru-NGQDs for "signal-on" ECL depending on the length of the DNA sequence. Here, a dual-signal readout aptasensor for aflatoxin B1 (AFB1) detection was developed via the enhanced ECL of SiO2@Ru-NGQDs by Fc-apt. The redox currents of Fc and the ECL of Ru(bpy)32+ were simultaneously collected as yardsticks, and both decreased with higher concentrations of AFB1. The aptasensor allowed linear ranges of 3 × 10-5 to 1 × 102 ng mL-1 for ECL mode and 1 × 10-3 to 3 × 103 ng mL-1 for electrochemical mode. Our work provides insight into the interactions between Fc and Ru(bpy)32+. The dual-signal readout strategy is a potential platform for the versatile design of aptasensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.