Abstract
Retinoids (vitamin A and its derivatives) play pivotal roles in diverse processes, ranging from homeostasis to neurodegeneration, which are also influenced by steroid hormones. The rate-limiting step in steroid biosynthesis is mediated by the steroidogenic acute regulatory (StAR) protein. In the present study, we demonstrate that retinoids enhanced StAR expression and pregnenolone biosynthesis, and these parameters were markedly augmented by activation of the PKA pathway in mouse hippocampal neuronal HT22 cells. Deletion and mutational analyses of the 5′-flanking regions of the StAR gene revealed the importance of a retinoic acid receptor (RAR)/retinoid X receptor (RXR)-liver X receptor (LXR) heterodimeric motif at −200/−185 bp region in retinoid responsiveness. The RAR/RXR-LXR sequence motif can bind RARα and RXRα, and retinoid regulated transcription of the StAR gene was found to be influenced by the LXR pathway, representing signaling cross-talk in hippocampal neurosteroid biosynthesis. Steroidogenesis decreases during senescence due to declines in the central nervous system and the endocrine system, and results in hormone deficiencies, inferring the need for hormonal balance for healthy aging. Loss of neuronal cells, involving accumulation of amyloid beta (Aβ) and/or phosphorylated Tau within the brain, is the pathological hallmark of Alzheimer's disease (AD). HT22 cells overexpressing either mutant APP (mAPP) or mutant Tau (mTau), conditions mimetic to AD, enhanced toxicities, and resulted in attenuation of both basal and retinoid-responsive StAR and pregnenolone levels. Co-expression of StAR with either mAPP or mTau diminished cytotoxicity, and concomitantly elevated neurosteroid biosynthesis, pointing to a protective role of StAR in AD. These findings provide insights into the molecular events by which retinoid signaling upregulates StAR and steroid levels in hippocampal neuronal cells, and StAR, by rescuing mAPP and/or mTau-induced toxicities, modulates neurosteroidogenesis and restores hormonal balance, which may have important implications in protecting AD and age-related complications and diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.