Abstract

Abstract Purpose To evaluate the changes in the retinal oxygen partial pressure (PO2) following physiological stimuli. Methods Evaluation of either the preretinal and intraretina partial pressure of oxygen (PO2) distribution, using oxygen sensitive microelectrodes, in various animal models. Measurements were obtained during changes of the perfusion pressure, systemic hyperoxia, hypoxia, hypercapnia, carbogen breathing and following carbonic anydrase inhibitors use. Results The oxygen tension (PO2) in the inner half of the retina remains largely unaffected by moderate changes in perfusion pressure. The increase of the systemic PaO2 through breathing of 100% O2 (hyperoxia) induces endothelin (ET) mediated marked vasoconstriction of the inner retinal arterioles in both anesthetized animals and normal human subjects. The regulatory vasoconstriction maintains the PO2 in retinal tissue constant. A decrease in PaO2 (hypoxia) induces a vasodilation of the retinal arterioles through endothelium‐derived NO release. As a result, trans‐retinal PO2 profiles made during steps of systemic hypoxia have shown that the values measured in the inner retina up to half of its thickness, remain rather stable. By contrast, the PO2 values, measured close to the choroid and in the outer retina, decrease in a linear manner with the decrease of the PaO2. An increase in the PaCO2 (hypercapnia) of arteriolar blood, produces an increase in retinal blood flow and retinal tissue PO2. Intravenous injection of acetazolamide (carbonic anhydrase inhibitor) produces an increase in preretinal PO2 due to dilation of the retinal vessels Conclusion Thanks to the autoregulatory capability of the retinal circulation, the oxygen tension (PO2) in the inner half of the retina, remains largely unaffected during physiological stimuli.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.