Abstract

To investigate the mechanism of the regulation of human red blood cell deformability, we examined the deformability under mechanical stress. Washed human red blood cells were rapidly injected through a fine needle, and their filterability was measured using a nickel mesh filter. The decrease in filterability showed a V-shaped curve depending on the extracellular Ca2+ concentration; the maximum decrease was achieved at approximately 50 muM. The decreased filterability was accompanied by no change in cell morphology and cell volume, indicating that the decrease in filterability can be ascribed to alterations of the membrane properties. Ca2+ entry blockers (nifedipine and felodipine) inhibited the impairment of filterability under mechanical stress. Prostaglandins E1 and E2, epinephrine, and pentoxifylline, which are thought to modulate the intracellular adenosine 3',5'-cyclic monophosphate (cAMP) level of red blood cells, improved or worsened the impaired filterability according to their expected actions on the cAMP level of the cells. These results strongly suggest that the membrane properties regulating red blood cell deformability are affected by the signal transduction system, including Ca(2+)-dependent and cAMP-mediated signaling pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.