Abstract

von Hippel-Lindau (VHL) tumor suppressor loss is associated with renal cell carcinoma (RCC) pathogenesis. Meanwhile, aberrant activation of the insulin-like growth factor-I (IGF-I) signaling has been implicated in the development of highly invasive metastatic RCC. However, the link between VHL inactivation and RCC invasiveness is still unexplored. Here, we show that the receptor for activated C kinase 1 (RACK1) is a novel pVHL-interacting protein. pVHL competes with IGF-I receptor (IGF-IR) for binding to RACK1 thus potentially modulating the downstream IGF-I signal pathway. Upon IGF-I stimulation, pVHL-deficient RCC cells exhibit increased RACK1/IGF-IR binding and increased IGF-IR tyrosine kinase activity. pVHL-deficient RCC cells also demonstrate elevated PI3K/Akt signaling and matrix metalloproteinase-2 activity that culminates in enhanced cellular invasiveness, which can be partially suppressed by RACK1 small interfering RNA. Domain mapping analysis showed that the pVHL α-domain and the RACK1 WD 6-7 domains are critical for the interaction. Additionally, the RACK1 expression level is not regulated by pVHL expression status, suggesting that pVHL modifies RACK1 functions independent of the VHL/elongin E3 ubiquitin ligase complex. Our data indicate that RACK1 serves as a direct mediator between loss of pVHL function and enhanced IGF-IR signaling pathway in RCC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.