Abstract

The effects of a homologous series of fatty acids with a chain length of two to eight on the rate of pyruvate oxidation and covalent interconversions of the pyruvate dehydrogenase complex (PDH) were studied in isolated perfused rat hearts. In the Langendorff-perfused heart beating at 5 Hz against an aortic pressure of 59 mmHg (7.85 kPa), a positive linear correlation was found between the fraction of PDH existing in the active non-phosphorylated form of pyruvate dehydrogenase complex (PDHa) and the pyruvate oxidation rate until the PDHa fraction increased to 48%. This value resulted in a saturation of the citric acid cycle and further activation did not increase the metabolic flux. The PDHa content of the tissue was higher during infusion of odd carbon number fatty acids than during infusion of even carbon number fatty acids. Propionate caused an almost maximal (93%) activation of PDH. A negative correlation was found between the mitochondrial NADH/NAD+ ratio and the PDHa content. A negative correlation was also found between the acetyl-CoA/CoA ratio and the tissue PDHa content. The rate of labelled CO2 production, the specific radioactivity of tissue alanine and the metabolic balance sheet demonstrated that the alanine aminotransferase reaction in the total tissue does not reach equilibrium with the mitochondrial pyruvate pool during propionate oxidation, but the equilibrium is reached during the oxidation of even-number carbon fatty acids. This suggests that pyruvate is formed from propionate-derived metabolites also in the cytosol, although the primary metabolism of propionate occurs in the mitochondria. The results indicate that the rate of pyruvate oxidation in the myocardium is mainly regulated by covalent interconversion of PDH. During propionate oxidation the PDHa content in the tissue can increase beyond the point of saturation of the citric acid cycle and this indicates that feedback inhibition of the enzyme is rate-determining under these conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call