Abstract

SummaryGenetic variation of the 16p11.2 deletion locus containing the KCTD13 gene and of CUL3 is linked with autism. This genetic connection suggested that substrates of a CUL3-KCTD13 ubiquitin ligase may be involved in disease pathogenesis. Comparison of Kctd13 mutant (Kctd13−/−) and wild-type neuronal ubiquitylomes identified adenylosuccinate synthetase (ADSS), an enzyme that catalyzes the first step in adenosine monophosphate (AMP) synthesis, as a KCTD13 ligase substrate. In Kctd13−/− neurons, there were increased levels of succinyl-adenosine (S-Ado), a metabolite downstream of ADSS. Notably, S-Ado levels are elevated in adenylosuccinate lyase deficiency, a metabolic disorder with autism and epilepsy phenotypes. The increased S-Ado levels in Kctd13−/− neurons were decreased by treatment with an ADSS inhibitor. Lastly, functional analysis of human KCTD13 variants suggests that KCTD13 variation may alter ubiquitination of ADSS. These data suggest that succinyl-AMP metabolites accumulate in Kctd13−/− neurons, and this observation may have implications for our understanding of 16p11.2 deletion syndrome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call