Abstract
Tetrahydrobiopterin (BH4) is synthesized from guanosine triphosphate (GTP) by GTP cyclohydrolase I (GCH), 6-pyruvoyltetrahydropterin synthase (PTS), and sepiapterin reductase (SPD). GCH is the rate-limiting enzyme. BH4 is a cofactor for three pteridine-requiring monooxygenases that hydroxylate aromatic L-amino acids, i.e., tyrosine hydroxylase (TH), tryptophan hydroxylase (TPH), and phenylalanine hydroxylase (PAH), as well as for nitric oxide synthase (NOS). The intracellular concentrations of BH4, which are mainly determined by GCH activity, may regulate the activity of TH (an enzyme-synthesizing catecholamines from tyrosine), TPH (an enzyme-synthesizing serotonin and melatonin from tryptophan), PAH (an enzyme required for complete degradation of phenylalanine to tyrosine, finally to CO2 + H2O), and also the activity of NOS (an enzyme forming NO from arginine), Dominantly inherited hereditary progressive dystonia (HPD), also termed DOPA-responsive dystonia (DRD) or Segawa's disease, is a dopamine deficiency in the nigrostriatal dopamine neurons, and is caused by mutations of one allele of the GCH gene. GCH activity and BH4 concentrations in HPD/DRD are estimated to be 2-20% of the normal value. By contrast, recessively inherited GCH deficiency is caused by mutations of both alleles of the GCH gene, and the GCH activity and BH4 concentrations are undetectable. The phenotypes of recessive GCH deficiency are severe and complex, such as hyperphenylalaninemia, muscle hypotonia, epilepsy, and fever episode, and may be caused by deficiencies of various neurotransmitters, including dopamine, norepinephrine, serotonin, and NO. The biosynthesis of dopamine, norepinephrine, epinephrine, serotonin, melatonin, and probably NO by individual pteridine-requiring enzymes may be differentially regulated by the intracellular concentration of BH4, which is mainly determined by GCH activity. Dopamine biosynthesis in different groups of dopamine neurons may be differentially regulated by TH activity, depending on intracellular BH4 concentrations and GCH activity. The nigrostriatal dopamine neurons may be most susceptible to a partial decrease in BH4, causing dopamine deficiency in the striatum and the HPD/DRD phenotype.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.