Abstract

The present series of experiments examined the effects of follicle-stimulating hormone (FSH) and insulin (IN) on granulosa cell (GC) proto-oncogene expression and DNA synthesis. In the first study, GCs were harvested from immature rat ovaries after 15, 30, or 60 min of perifusion and DNA synthesis (3H-thymidine incorporation) and proto-oncogene mRNA levels were determined. The presence of c-myc and c-fos proteins was localized within GCs immunocytochemically. GCs of control ovaries exhibited modest levels of DNA synthesis and proto-oncogene expression. FSH/IN not only stimulated DNA synthesis but also increased c-myc, c-fos, and c-jun mRNA levels and the percentage of cells staining for c-fos and c-myc proteins. The protein kinase inhibitor, 2-aminopurine (2-AP), inhibited the FSH/IN-induced increases in c-myc and c-fos mRNA levels, the percentage of cells staining for Myc and Fos protein, and DNA and protein synthesis. The effects of 48 h of perifusion with FSH in the presence or absence of IN were also examined. These treatments were selected because after 48 h of continuous exposure to FSH alone, estradiol-17 beta (E2) secretion is enhanced and 3H-thymidine incorporation is inhibited. Conversely, FSH/IN maintains 3H-thymidine incorporation for up to 48 h of perifusion culture without stimulating E2 (Peluso et al., Endocrinology 1991; 128:191-196). After 48 h of perifusion, both FSH and FSH/IN stimulated c-fos mRNA and protein levels. However, high levels of c-jun mRNA and protein were detected only within GCs of FSH/IN-treated ovaries.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call