Abstract

Fumaric acid esters are used to treat psoriasis, an inflammatory skin disease characterized by keratinocyte proliferation. Inflammation and proliferation are hallmarks of retinal disease; hence, fumaric acid esters may have therapeutic value in retinal pathology. In diseased retinas, Müller glial cells (MCs) undergo reactive gliosis, a hyperproliferative state. MCs take up folate, a vitamin necessary for cell proliferation, via the proton-coupled folate transporter (PCFT). Here we examined the effect of monomethylfumarate (MMF), the active metabolite of fumaric acid esters, on expression and function of PCFT in MCs. Primary MCs, isolated from neonatal mouse retinas, were treated with MMF, and PCFT function was monitored by measuring uptake of radiolabeled methyltetrahydrofolate (MTF) at pH 5.5. Dose-response and time-course analyses were performed to identify optimal conditions for maximal effect. The influence of MMF treatment on kinetic parameters of PCFT was studied, and PCFT expression was analyzed at the mRNA and protein level. MTF uptake in MCs decreased by ˜50% following 18 h treatment with 1 mM MMF. This effect was specific to fumaric acid esters. MMF treatment decreased the maximal velocity of the transporter without altering substrate affinity. The decrease in PCFT function following MMF treatment was accompanied by attenuated PCFT expression. This is the first report that an antipsoriatic compound can regulate folate transport in MCs and may have potential for the treatment of reactive gliosis in retinal disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.