Abstract

Protein kinase C (PKC) is a family of closely related lipid-dependent and diacyglycerol-activated isoenzymes known to play an important role in the signal transduction pathways involved in hormone release, mitogenesis and tumor promotion. Reversible activation of PKC by the second messengers diacylglycerol and calcium is an established model for the short term regulation of PKC in the immediate events of signal transduction. PKC can also be modulated long term by changes in the levels of activators or inhibitors for a prolonged period or by changes in the levels of functional PKC isoenzymes in the cell during development or in response to hormones and/or differentiation factors. Indeed, studies have indicated that the sustained activation or inhibition of PKC activity in vivo may play a critical role in regulation of long term cellular events such as proliferation, differentiation and tumorigenesis. In addition, these regulatory events are important in colon cancer, where a decrease in PKC activators and activity suggests PKC acts as an anti-oncogene, in breast cancer, where an increase in PKC activity suggests an oncogenic role for PKC, and in multidrug resistance (MDR) and metastasis where an increase in PKC activity correlates with increased resistance and metastatic potential. These studies highlight the importance and significance of regulation of PKC activity in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.