Abstract

There is strong evidence for the involvement of inflammatory mediators such as interleukin (IL)-1 in the biochemical mechanisms of parturition. Therefore the effects of the IL-1 family (IL-1alpha (1 ng/ml), IL-1beta (1 ng/ml) and the IL-1 receptor antagonist (IL-1ra) (10 ng/ml)) on the regulation of prostaglandin synthesis in term human fetal membranes were investigated. It was found that, after 4 h of culture, IL-1beta increased prostaglandin E2 (PGE2) output approximately twofold. This was associated with both a significant increase in cyclo-oxygenase-2 (COX-2) mRNA levels (approximately fourfold compared with control) and translocation of cytoplasmic phospholipase A2 (cPLA2) from the cytosol to the membrane fraction. IL-1alpha was less effective than IL-1beta at stimulating PGE2 production through similar mechanisms. IL-1ra had no effect on PGE2 output. However, in combination treatments, IL-1ra did not inhibit IL-1alpha- or IL-1beta-stimulated PGE2 output, and increased PGE2 production further compared with IL-1beta alone. IL-1ra decreased IL-1beta-induced COX-2 mRNA expression by about half and significantly increased cPLA2 protein levels, as detected by immunoblotting, when used alone and together with IL-1beta. These results suggest that IL-1ra has partial agonist properties when used together with IL-1alpha and IL-1beta in fetal membranes by increasing cPLA2 protein levels, which leads to an increase in the production of prostaglandins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.