Abstract
Specialisation of the respiratory portion of human fetal lung commences around 20-24 weeks gestation. In contrast, human fetal lung in vitro has the capacity to self-differentiate from 12 weeks gestation when grown in media devoid of growth factors or hormones, suggesting activation of autocrine or paracrine factors in vitro, or removal of the fetus from in utero inhibitory mechanisms. Prostaglandins play a key role during in vitro human fetal lung development and are synthesised by prostaglandin H synthase-1 (PGHS-1) and inactivated by 15-hydroxyprostaglandin dehydrogenase (PGDH) with formation of inactive 13,14-dihydro-15-keto-prostaglandins. We have used quantitative immunohistochemistry to determine expression and localisation of PGHS-1, PGDH, PGE2 and 13,14-dihydro-15-keto-PGE2 (PGEM) in human fetal lung with in situ hybridisation to localise PGHS-1 and PGDH mRNA. For the catabolic enzyme PGDH, amounts of mRNA, protein and enzyme product PGEM are increased within epithelium of distal as compared to more proximal airways. For PGHS-1, comparable amounts of mRNA, protein and enzyme product PGE2 are found in proximal and distal lung epithelium. Catabolism by PGDH is a sensitive mechanism for regulating bioavailability of prostaglandins and we propose that active catabolism of prostaglandins within human fetal lung epithelium is an inhibitory mechanism retarding epithelial differentiation in utero.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.