Abstract

BackgroundThe suprachiasmatic nucleus (SCN) contains the master circadian clock that regulates daily rhythms of many physiological and behavioural processes in mammals. Previously we have shown that prokineticin 2 (PK2) is a clock-controlled gene that may function as a critical SCN output molecule responsible for circadian locomotor rhythms. As light is the principal zeitgeber that entrains the circadian oscillator, and PK2 expression is responsive to nocturnal light pulses, we further investigated the effects of light on the molecular rhythm of PK2 in the SCN. In particular, we examined how PK2 responds to shifts of light/dark cycles and changes in photoperiod. We also investigated which photoreceptors are responsible for the light-induced PK2 expression in the SCN. To determine whether light requires an intact functional circadian pacemaker to regulate PK2, we examined PK2 expression in cryptochrome1,2-deficient (Cry1-/-Cry2-/-) mice that lack functional circadian clock under normal light/dark cycles and constant darkness.ResultsUpon abrupt shifts of the light/dark cycle, PK2 expression exhibits transients in response to phase advances but rapidly entrains to phase delays. Photoperiod studies indicate that PK2 responds differentially to changes in light period. Although the phase of PK2 expression expands as the light period increases, decreasing light period does not further condense the phase of PK2 expression. Genetic knockout studies revealed that functional melanopsin and rod-cone photoreceptive systems are required for the light-inducibility of PK2. In Cry1-/-Cry2-/- mice that lack a functional circadian clock, a low amplitude PK2 rhythm is detected under light/dark conditions, but not in constant darkness. This suggests that light can directly regulate PK2 expression in the SCN.ConclusionThese data demonstrate that the molecular rhythm of PK2 in the SCN is regulated by both the circadian clock and light. PK2 is predominantly controlled by the endogenous circadian clock, while light plays a modulatory role. The Cry1-/-Cry2-/- mice studies reveal a light-driven PK2 rhythm, indicating that light can induce PK2 expression independent of the circadian oscillator. The light inducibility of PK2 suggests that in addition to its role in clock-driven rhythms of locomotor behaviour, PK2 may also participate in the photic entrainment of circadian locomotor rhythms.

Highlights

  • The suprachiasmatic nucleus (SCN) contains the master circadian clock that regulates daily rhythms of many physiological and behavioural processes in mammals

  • We previously found that prokineticin 2 (PK2) is a first order clock-controlled gene, whose expression in the SCN is regulated by CLOCK and BMAL1 acting on the E-boxes in the gene's promoter [28]

  • Animals were first entrained for two weeks under 12 hour light: 12 hour dark (LD), subjected to either a 6 hour delay (6hrD) shift or 6 hour advance (6hrA) shift of light/dark cycles

Read more

Summary

Introduction

The suprachiasmatic nucleus (SCN) contains the master circadian clock that regulates daily rhythms of many physiological and behavioural processes in mammals. As light is the principal zeitgeber that entrains the circadian oscillator, and PK2 expression is responsive to nocturnal light pulses, we further investigated the effects of light on the molecular rhythm of PK2 in the SCN. Excellent progress has been made in the understanding of circadian photic entrainment [12,13,14,15] This includes light-induced transcriptional activation of core clock genes in the SCN, such as Per and Per, as well as immediate-early gene cfos. Exposure to light pulses at night induces expression of these genes in the SCN, and this light induction mechanism has been suggested as a critical pathway for the resetting of circadian clock in response to changes in light/dark conditions [16,17,18,19]. Intercellular signalling mechanisms between SCN neurons are important in circadian photic entrainment, as mice with mutation in a neuropeptide receptor for VIP (Vasoactive Intestinal Peptide) and PACAP (Pituitary Adenylate Cyclase Activating Peptide) are unable to sustain normal circadian behaviour and exhibit loss of sensitivity to light [20]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call