Abstract

This study aimed to investigate the protective effects of PPARγ/CPT-1 regulation on cisplatin-induced cochlear hair cell injury. The viability, apoptosis and mitochondrial membrane potential of cisplatin-induced HEI-OC1 cells were determined by CCK-8 assay, TUNEL and JC-1 staining, respectively. The oxidative stress and lipid metabolism were detected by the assay kits of MDA, ROS, SOD, CAT, TG and FFA. The transfection efficiency of overexpression (OV)-PPARG and OV-CPT1A was examined by RT-qPCR and the expressions of apoptosis- and lipid metabolism-related proteins were detected by western blot. As a result, cisplatin with varying concentrations (5, 10, 30μM) suppressed the viability, promoted the apoptosis and hindered the mitochondrial function of HEI-OC1 cells, accompanied with up-regulated expressions of Bax and cleaved caspase-3 and down-regulated expression of Bcl-2. The oxidative stress was aggravated and lipid metabolism was inhibited by cisplatin (5, 10, 30μM) induction, evidenced by the increased levels of MDA, ROS, TG, FFA and the decreased levels of SOD and CAT. Overexpression of PPARG or CPT1A could improve the viability, mitochondrial function, lipid metabolism and suppress the oxidative stress and apoptosis of cisplatin-induced HEI-OC1 cells. In conclusion, up-regulation of PPARG or CPT1A ameliorated cochlear hair cell injury by improving cellular lipid metabolism and inhibiting oxidative stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call