Abstract

A series of elegant embryo transfer experiments in the 1950s demonstrated that the uterine environment could alter vertebral patterning in inbred mouse strains. In the intervening decades, attention has tended to focus on the technical achievements involved and neglected the underlying biological question: how can genetically homogenous individuals have a heterogenous number of vertebrae? Here I revisit these experiments and, with the benefit of knowledge of the molecular-level processes of vertebral patterning gained over the intervening decades, suggest a novel hypothesis for homeotic transformation of the last lumbar vertebra to the adjacent sacral type through regulation of Hox genes by sex steroids. Hox genes are involved in both axial patterning and development of male and female reproductive systems and have been shown to be sensitive to sex steroids in vitro and in vivo. Regulation of these genes by sex steroids and resulting alterations to vertebral patterning may hint at a deep evolutionary link between the ribless lumbar region of mammals and the switch from egg-laying to embryo implantation. An appreciation of the impact of sex steroids on Hox genes may explain some puzzling aspects of human disease, and highlights the spine as a neglected target for in utero exposure to endocrine disruptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call