Abstract

The molecular cues that regulate neurite morphology within the target environment are key to the formation of complex neural circuitry. During development of the ponto-cerebellar projection, pontine fibers sprout and form elaborate arbors within the inner cerebellar layer prior to arrival of their target cells, the cerebellar granule neurons. Here, we describe the biochemical fractionation of two granule neuron-derived factors that stimulate elaboration of pontine neurites. These factors were identified using a dissociated pontine bioassay and biochemically fractionated from granule cell (GC) conditioned medium (GCCM). One of the factors, STIM1, is a protein with a molecular weight greater than 30 kDa that is distinct from known neurotrophins. The other, STIM2, is a small, protease-resistant molecule with an estimated molecular weight below 1 kDa. We show that these factors stimulate pontine neurite elongation both independently and cooperatively and thus may contribute to the formation of elaborate pontine arbors within the cerebellar cortex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.