Abstract

Carbon nitride (CN) polymers exhibit tunable and fascinating physicochemical properties and are thus an essential class of photocatalytic materials with potential applications. Although significant progress has been made in the fabrication of CN, the preparation of metal-free crystalline CN via a straightforward method remains a considerable challenge. Herein, we describe a new attempt to synthesize crystalline carbon nitride (CCN) with a well-developed structure through regulation of the polymerization kinetics. The synthetic process involves the pre-polymerization of melamine to remove most of the ammonia and further calcination of the pre-heated melamine in the presence of copper oxide as an ammonia absorbent. Copper oxide can decompose the ammonia produced by the polymerization process, thereby promoting the reaction. These conditions facilitate the polycondensation process while avoiding carbonization of the polymeric backbone at high temperatures. Owing to the high crystallinity, nanosheet structure, and efficient charge-carrier transmission capacity, the as-prepared CCN catalyst shows much higher photocatalytic activity than its counterparts. Our study provides a novel strategy for the rational design and synthesis of high-performance carbon nitride photocatalysts by simultaneously optimizing polymerization kinetics and crystallographic structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.