Abstract

Human thyroid cells in culture take up and organify (125)I when cultured in TSH (acting through cAMP) and insulin. They also secrete urokinase (uPA) and tissue-type (tPA) plasminogen activators (5-100 IU/10(6)cells/day). TSH and insulin both decreased secreted PA activity (PAA), uPA and tPA protein and their mRNAs. Autocrine fibroblast growth factor increased secreted PAA and inhibited thyroid cell (125)I uptake. Epidermal growth factor (EGF) and the protein kinase C (PKC) activator, TPA significantly increased PAA and inhibited thyroid differentiated function, (TPA > EGF). For TPA, effects were rapid, increased PAA secretion and decreased (125)I uptake being seen at 4 h whereas for EGF, a 24 h incubation was required. qRT-PCR showed significantly increased mRNA expression of uPA with lesser effects on tPA. Aprotinin, which inhibits PAA, increased (125)I uptake but did not abrogate the effects of TPA and EGF. The MEKK inhibitor, PD98059 partially reversed the effects of EGF and TPA on PAA, and largely reversed the effects of EGF but not TPA on differentiated function. PKC inhibitors bisindoylmaleimide 1, and the specific PKCbeta inhibitor, LY379196 completely reversed the effects of TPA on (125)I uptake and PAA whereas EGF effects were unaffected. TPA inhibited follicle formation and this effect was blocked by LY379196 but not PD98059. We conclude that in thyroid cells, MAPK activation inversely correlates with (125)I uptake and directly correlates with PA expression, in contrast to the effects of cAMP. TPA effects on iodide metabolism, dissolution of follicles and uPA synthesis are mediated predominantly through PKCbeta whereas EGF exerts its effects through MAPK but not PKCbeta.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.