Abstract

Glucose metabolism is reported to be regulated by the central nervous system, but it is unclear whether this regulation is altered in diabetes. We investigated whether regulation of glucose metabolism by central dopamine D2 receptors is altered in type 1 and type 2 diabetic models. Intracerebroventricular injections of both the dopamine D2 receptor agonist quinpirole and the antagonist l-sulpiride induced hyperglycemia in control mice, but not in streptozotocin (STZ)-induced diabetic mice, a type 1 diabetic model. Hyperglycemia induced by quinpirole or l-sulpiride was diminished following fasting and these drugs did not affect hyperglycemia in the pyruvate tolerance test. In addition, both quinpirole and l-sulpiride increased hepatic glucose-6-phosphatase (G6Pase) mRNA. In STZ-induced diabetic mice, dopamine and dopamine D2 receptor mRNA in the hypothalamus, which regulates glucose homeostasis, were decreased. Hepatic glycogen and G6Pase mRNA were also decreased in STZ-induced diabetic mice. Neither quinpirole nor l-sulpiride increased hepatic G6Pase mRNA in STZ-induced diabetic mice. In diet-induced obesity mice, a type 2 diabetic model, both quinpirole and l-sulpiride induced hyperglycemia, and hypothalamic dopamine and dopamine D2 receptor mRNA were not altered. These results indicate that (i) stimulation or blockade of dopamine D2 receptors causes hyperglycemia by increasing hepatic glycogenolysis, and (ii) stimulation or blockade of dopamine D2 receptors does not affect glucose levels in type 1 but does so in type 2 diabetic models. Moreover, hypothalamic dopaminergic function and hepatic glycogenolysis are decreased in the type 1 diabetic model, which reduces hyperglycemia induced by stimulation or blockade of dopamine D2 receptors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.