Abstract

SummaryDysfunction and loss of insulin-producing pancreatic β cells represent hallmarks of diabetes mellitus. Here, we show that mice lacking the mitogen-activated protein kinase (MAPK) p38δ display improved glucose tolerance due to enhanced insulin secretion from pancreatic β cells. Deletion of p38δ results in pronounced activation of protein kinase D (PKD), the latter of which we have identified as a pivotal regulator of stimulated insulin exocytosis. p38δ catalyzes an inhibitory phosphorylation of PKD1, thereby attenuating stimulated insulin secretion. In addition, p38δ null mice are protected against high-fat-feeding-induced insulin resistance and oxidative stress-mediated β cell failure. Inhibition of PKD1 reverses enhanced insulin secretion from p38δ-deficient islets and glucose tolerance in p38δ null mice as well as their susceptibility to oxidative stress. In conclusion, the p38δ-PKD pathway integrates regulation of the insulin secretory capacity and survival of pancreatic β cells, pointing to a pivotal role for this pathway in the development of overt diabetes mellitus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.