Abstract

Phototropism, or the directional growth (curvature) of various organs toward or away from incident light, represents a ubiquitous adaptive response within the plant kingdom. This response is initiated through the sensing of directional blue light (BL) by a small family of photoreceptors known as the phototropins. Of the two phototropins present in the model plant Arabidopsis thaliana, phot1 (phototropin 1) is the dominant receptor controlling phototropism. Absorption of BL by the sensory portion of phot1 leads, as in other plant phototropins, to activation of a C-terminal serine/threonine protein kinase domain, which is tightly coupled with phototropic responsiveness. Of the five phot1-interacting proteins identified to date, only one, NPH3 (non-phototropic hypocotyl 3), is essential for all phot1-dependent phototropic responses, yet little is known about how phot1 signals through NPH3. Here, we show that, in dark-grown seedlings, NPH3 exists as a phosphorylated protein and that BL stimulates its dephosphorylation. phot1 is necessary for this response and appears to regulate the activity of a type 1 protein phosphatase that catalyzes the reaction. The abrogation of both BL-dependent dephosphorylation of NPH3 and development of phototropic curvatures by protein phosphatase inhibitors further suggests that this post-translational modification represents a crucial event in phot1-dependent phototropism. Given that NPH3 may represent a core component of a CUL3-based ubiquitin-protein ligase (E3), we hypothesize that the phosphorylation state of NPH3 determines the functional status of such an E3 and that differential regulation of this E3 is required for normal phototropic responsiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.