Abstract

The biosynthesis of phosphatidylserine (PS) and its conversion to phosphatidylcholine (PC) are regulated coordinately by inositol and choline in Saccharomyces cerevisiae ( G. M. Carman and S. A. Henry, 1989, Annu. Rev. Biochem. 58, 635–669). In this study, PS decarboxylase activity is shown to be partially repressed when inositol is added to the medium of cells in the log phase of growth, and the extent of repression is augmented by the inclusion of choline, but not ethanolamine. The kinetics of repression and derepression of PS decarboxylase, PS synthase, and phospholipid N-methyltransferase (PNMT) activities, as regulatory responses to the availability of exogenous inositol and choline, have been characterized. When inositol was added to the medium of cell cultures growing exponentially, the three biosynthetic enzyme activities reached an intermediate level of repression (50–85% of control) within 60 min. After the addition of the combination of inositol and choline, PS decarboxylase, PS synthase, and PNMT activities decreased to the intermediate levels of repression in 60 min and were subsequently reduced to 15–40% of control values during a later stage of regulation (2–3 h). In a derepression study, the three enzyme activities remained relatively stable for approximately 60 min following the removal of choline and/or inositol from the growth medium, but the specific activities of PS decarboxylase, PS synthase, and PNMT increased to maximally derepressed levels within 2–3 h. The induction of the three biosynthetic activities was blocked by cycloheximide, but not by chloramphenicol. In summary, the level of PS decarboxylase activity in S. cerevisiae is partially and reversibly suppressed by inositol and further diminished by the combination of inositol and choline. The biphasic kinetics of repression by inositol and choline suggest that the effect of choline is dependent on earlier events mediated by inositol and possibly involves a separate regulatory factor(s).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.