Abstract
Dickeya dadantii is a pathogen infecting a wide range of plant species. Soft rot, the visible symptom, is mainly due to production of pectate lyases (Pels) that can destroy plant cell walls. Previously, we found that nucleoid-associated protein (NAP) H-NS is a key regulator of pel gene expression. The primary binding sites of this NAP have been determined here by footprinting experiments on the pelD gene, encoding an essential virulence factor. Quantitative analysis of DNAse I footprints and surface plasmon resonance imagery experiments further revealed that high-affinity binding sites initiate cooperative binding to establish the nucleoprotein structure required for gene expression silencing. Mutations in the primary binding sites resulted in reduction or loss of repression by H-NS. Overall, these data suggest that H-NS represses pelD, and by inference, other pel genes, by a cooperative binding mechanism, through oligomerization of H-NS molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.