Abstract

IntroductionAs endogenous miRNA carriers, exosomes play a role in the pathophysiological processes of various diseases. However, their functions and regulation mechanisms in pancreatic fibrosis remain unclear.MethodsIn this study, an RNA microarray was used to detect differentially expressed exosomal miR-130a-3p in AR42J cells before and after taurolithocholate (TLC) treatment. mRNA-seq was used to screen differentially expressed genes before and after pancreatic stellate cell (PSC) activation. We used the STRING database to construct a protein-protein interaction (PPI) network for differentially expressed genes, used CytoNCA to analyze the centrality of the PPI network, and identified 10 essential proteins in the biological network. Then, the TargetScan and miRanda databases were used to predict the target genes of miR-130a-3p. The intersections of the target genes and the mRNAs encoding the 10 essential proteins were identified to construct miR-130a-3p/peroxisome proliferator-activated receptor gamma (PPAR-γ) pairs. Fluorescence labeling of exosomes and dynamic tracing showed that exosomes can fuse with the cell membranes of PSCs and transport miR-130a-3p into PSCs. A luciferase reporter gene assay was used to confirm that miR-130a-3p can bind to PPAR-γ to inhibit PPAR-γ expression. In vitro and in vivo functional experiments were performed for gain-of-function studies and loss-of-function studies, respectively.ResultsThe studies showed that acinar cell-derived exosomal miR-130a-3p promotes PSC activation and collagen formation through targeting of stellate cellular PPAR-γ. Knockdown of miR-130a-3p significantly improved pancreatic fibrosis. Notably, miR-130a-3p knockdown reduced serum levels of hyaluronic acid (HA) and β-amylase and increased the C-peptide level to protect endocrine and exocrine pancreatic functions and the function of endothelial cells.ConclusionThis study revealed that the exosomal miR-130a-3p/PPAR-γ axis participates in PSC activation and the mechanism of chronic pancreatitis (CP) with fibrosis, thus providing a potential new target for the treatment of chronic pancreatic fibrosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call