Abstract
We have characterized the covalent poly(ADP-ribosyl)ation of p53 using an in vitro reconstituted system. We used recombinant wild type p53, recombinant poly(ADP-ribose) polymerase-1 (PARP-1) (EC ), and betaNAD(+). Our results show that the covalent poly(ADP-ribosyl)ation of p53 is a time-dependent protein-poly(ADP-ribosyl)ation reaction and that the addition of this tumor suppressor protein to a PARP-1 automodification mixture stimulates total protein-poly(ADP-ribosyl)ation 3- to 4-fold. Electrophoretic analysis of the products synthesized indicated that short oligomers predominate early during hetero-poly(ADP-ribosyl)ation, whereas longer ADP-ribose chains are synthesized at later times of incubation. A more drastic effect in the complexity of the ADP-ribose chains generated was observed when the betaNAD(+) concentration was varied. As expected, increasing the betaNAD(+) concentration from low nanomolar to high micromolar levels resulted in the slower electrophoretic migration of the p53-(ADP-ribose)(n) adducts. Increasing the concentration of p53 protein from low nanomolar (40 nm) to low micromolar (1.0 microm) yielded higher amounts of poly(ADP-ribosyl)ated p53 as well. Thus, the reaction was acceptor protein concentration-dependent. The hetero-poly(ADP-ribosyl)ation of p53 also showed that high concentrations of p53 specifically stimulated the automodification reaction of PARP-1. The covalent modification of p53 resulted in the inhibition of the binding ability of this transcription factor to its DNA consensus sequence as judged by electrophoretic mobility shift assays. In fact, controls carried out with calf thymus DNA, betaNAD(+), PARP-1, and automodified PARP-1 confirmed our conclusion that the covalent poly(ADP-ribosyl)ation of p53 results in the transcriptional inactivation of this tumor suppressor protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.