Abstract
G-protein coupled receptors (GPCRs) have been extremely successful drug targets for a multitude of diseases from heart failure to depression. This super-family of cell surface receptors have not, however, been widely considered as a viable target in cancer treatment. In the current study we demonstrate that a classical Gq/11-coupled GPCR, the M3-muscarinic receptor, was able to regulate apoptosis via receptors that are endogenously expressed in the human neuroblastoma cell line SH-SY5Y and when ectopically expressed in Chinese hamster ovary (CHO) cells. Stimulation of the M3-muscarinic receptor was shown to inhibit the ability of the DNA-damaging chemotherapeutic agent, etoposide, from mediating apoptosis. This protective response in CHO cells correlated with the ability of the receptor to regulate the expression levels of p53. In contrast, stimulation of endogenous muscarinic receptors in SH-SY5Y cells did not regulate p53 expression but rather was able to inhibit p53 translocation to the mitochondria and p53 phosphorylation at serine 15 and 37. This study suggests the possibility that a GPCR can regulate the apoptotic properties of a chemotherapeutic DNA-damaging agent by regulating the expression, sub-cellular trafficking and modification of p53 in a manner that is in part dependent on the cell type.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.