Abstract

p53 is a critical coordinator of a wide range of stress responses. To facilitate a rapid response to stress, p53 is produced constitutively but is negatively regulated by MDM2. MDM2 can inhibit p53 in multiple independent ways: by binding to its transcription activation domain, inhibiting p53 acetylation, promoting nuclear export, and probably most importantly by promoting proteasomal degradation of p53. The latter is achieved via MDM2's E3 ubiquitin ligase activity harbored within the MDM2 RING finger domain. We have discovered that MTBP promotes MDM2-mediated ubiquitination and degradation of p53 and also MDM2 stabilization in an MDM2 RING finger-dependent manner. Moreover, using small interfering RNA to down-regulate endogenous MTBP in unstressed cells, we have found that MTBP significantly contributes to MDM2-mediated regulation of p53 levels and activity. However, following exposure of cells to UV, but not gamma-irradiation, MTBP is destabilized as part of the coordinated cellular response. Our findings suggest that MTBP differentially regulates the E3 ubiquitin ligase activity of MDM2 towards two of its most critical targets (itself and p53) and in doing so significantly contributes to MDM2-dependent p53 homeostasis in unstressed cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.